Analysis of Coastline Changes in Palu Bay, Central Sulawesi after the 2018 Tsunami Based on Sentinel 1 Satellite Imagery Using the Digital Shoreline Analysis System (DSAS) Method

Mochamad Arif Zainul Fuad(1*), Fikri Hardiansyah(2), Bambang Semedi(3),


(1) Prodi Ilmu Kelautan, Fakultas Perikanan dan Ilmu Kelautan Universitas Brawijaya, Malang; Marine Resources Exploration and Management Research Group (MEXMA) FPIK-UB
(2) Prodi Ilmu Kelautan, Fakultas Perikanan dan Ilmu Kelautan Universitas Brawijaya, Malang
(3) Prodi Ilmu Kelautan, Fakultas Perikanan dan Ilmu Kelautan Universitas Brawijaya, Malang
(*) Corresponding Author

Abstract


The Palu-Donggala earthquake that occurred on September 28, 2018 caused additional disasters in the form of liquefaction and tsunami. The tsunami that hit the coastal area of Palu Bay caused considerable damage, indicating a change in the coastline. The purpose of this study was to determine the changes in the coastline that occurred in Palu Bay, Palu City, Central Sulawesi as a result of the Tsunami. The data used in this study are Sentinel 1 satellite imagery before and after the Tsunami occurred. The coastline at each time is obtained from the extraction of Sentinel 1 satellite imagery. Analysis of shoreline change uses quantitative descriptive techniques with the help of the DSAS tool with change analysis based on the Net Shoreline Movement (NSM) method which is integrated with ArcGIS software. The results show that there has been a significant change in the coastline in Palu Bay, Palu City, Central Sulawesi. Coastline changes that occur are in the form of abrasion and accretion conditions, but are more dominated by abrasion. The highest abrasion of -167.53m is found on transect 309 which is located in the District of Mantikulore, and the lowest abrasion value of -0.43m is found on transect 242 which is located in the Ulujadi District. Meanwhile, the highest accretion value of 47.27m is found on transect 105 which is located in the West Palu District, and the lowest abrasion value of 0.56m is found on transect 68 which is also located in the West Palu District. The magnitude of the change in coastline that occurred in Palu Bay, Palu City, Central Sulawesi after the Tsunami was influenced by the openness of the coastal area to wave blows, the oval and narrow morphology of Palu Bay and the occurrence of ground deformation in the Palu-Koro Fault

Keywords


Tsunami; Coastline Changes; Sentinel-1 Imagery; DSAS

Full Text:

PDF

References


Agustin, N.S., & A.F.Syah. (2020). Analisis Perubahan Garis Pantai di Pulau Madura Menggunakan Citra Satelit Landsat 8. Juvenil:Jurnal Ilmiah Kelautan dan Perikanan 1 (3): 427–36. https://doi.org/10.21107/juvenil.v1i3.8843.

Arjasakusuma, S., S.S. Kusuma, S.Saringatin, P. Wicaksono, B.W. Mutaqin, & R. Rafif. (2021). Shoreline dynamics in East Java Province, Indonesia, from 2000 to 2019 using multi-sensor remote sensing data. Land 10 (2): 1–17. https://doi.org/10.3390/land10020100.

Astuti, E.D.T, L.M Sabri, & M. Awwaluddin. (2021). Analisis Penentuan Batas Pengelolaan Wilayah Laut Provinsi Berciri Kepulauan dari Citra Sentinel-1a (Studi Kasus : Provinsi Kep. Bangka Belitung). Jurnal Geodesi Undip 10 (2): 69–77.

Bioresita, F., & N.Hayati. 2016. Coastline changes detection using sentinel-1 satellite imagery in surabaya, east java, Indonesia. Geoid 11 (2): 190–98.

Chapkanski, S., G. Brocard, F. Lavigne, C. Tricot, E. Meilianda, N. Ismail, J. Majewski, J.P. Goiran, D. Alfian, & P. Daly. (2021). Fluvial and coastal landform changes in the Aceh River delta (Northern Sumatra) during the century leading to the 2004 Indian Ocean Tsunami. Earth Surface Processes and Landforms.

Demir, N., M. Kaynarca, & S. Oy. (2016). Extraction of coastlines with fuzzy approach using SENTINEL-1 SAR image. The International Archives of Photogrammetry, Remote Sensing and spatial Information Sciences 41: 747.

Fajrin., M.Y. Adha, & I. Armi. (2019). Pemanfaatan Citra Sentinel-1 Sar Untuk Deteksi Banjir Studi Kasus Pangkalan Koto Baru Sumatera Barat. In Seminar Nasional: Strategi Pengembangan Infrastruktur (SPI) 2019.

Fuad, M.A.Z., V.R. Effendi, & C.S.U. Dewi. (2022). Application of SAR Remote Sensing and Geographic Information Systems (GIS) in Coastline Change Studies – a Case Study of Coastline Change Due To the 2018 Tsunami in Tanjung Lesung, Banten. Asian Journal of Aquatic Sciences 5 (1): 87–95. https://doi.org/10.31258/ajoas.5.1.87-95.

Fuad, M.A.Z., N. Yunita, R.D. Kasitowati, A. Sartimbul, & N. Hidayati. (2019). Pemantauan Perubahan Garis Pantai Jangka Panjang dengan Teknologi Geo-Spasial di Pesisir Bagian Barat Kabupaten Tuban, Jawa Timur. Jurnal Geografi 11 (1). https://doi.org/10.24114/jg.v11i1.11409.

Fuad, M.A.Z, & M.F.A Setiyani. (2017). Automatic Detection of Decadal Shoreline Change on Northern Coastal of Gresik, East Java - Indonesia. IOP Conference Series: Earth and Environmental Science 98 (1). https://doi.org/10.1088/1755-1315/98/1/012001.

Fuad, M.A.Z., A. Sartimbul, F. Iranawati, A.B. Sambah, D.Yona, L.I. Harlyan, N. Hidayati, M.A. Rahman, & S.H.J. Sari. 2019. Metode Penelitian Kelautan dan Perikanan: Prinsip Dasar Penelitian, Pengambilan Sampel, Analisis, dan Interpretasi Data. Universitas Brawijaya Press.

Hakkou, M., M. Maanan, T. Belrhaba, K. El Khalidi, D. El Ouai, & A. Benmohammadi. (2018). Multi-decadal assessment of shoreline changes using geospatial tools and automatic computation in Kenitra coast, Morocco. Ocean and Coastal Management 163 (July): 232–39. https://doi.org/10.1016/j.ocecoaman.2018.07.003.

Han, H.G, & M.J. Lee. (2020). A Method for Classifying Land and Ocean Area by Removing Sentinel-1 Speckle Noise. Journal of Coastal Research 102 (sp1): 33–38. https://doi.org/10.2112/SI102-004.1.

Hapke, C.J., E.A. Himmelstoss, M.G. Kratzmann, J.H. List, & E.R.Thieler. (2010). National assessment of shoreline change: Historical shoreline change along the New England and Mid-Atlantic coasts. US Geological Survey.

Himmelstoss, E.A., R.E. Henderson, M.G. Kratzmann, & A.S. Farris. (2018). Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide. US Geological Survey.

Hong, S.B., W. Lee, J. Lee, & M. Youm. (2019). Development of Coastline Observation Technique using InSAR. Journal of Coastal Research 91 (SI): 351–55.

Kankara, R.S., S.C. Selvan, V.J. Markose, B. Rajan, & S. Arockiaraj. (2015). Estimation of long and short term shoreline changes along Andhra Pradesh coast using remote sensing and GIS techniques. Procedia Engineering 116 (1): 855–62. https://doi.org/10.1016/j.proeng.2015.08.374.

Kermani, S., M. Boutiba, M. Guendouz, M.S. Guettouche, & D. Khelfani. (2016). Detection and analysis of shoreline changes using geospatial tools and automatic computation: Case of jijelian sandy coast (East Algeria). Ocean and Coastal Management 132: 46–58. https://doi.org/10.1016/j.ocecoaman.2016.08.010.

Mitobe, Y., H. Tanaka, K. Watanabe, N. Tiwari, & Y. Watanabe. (2018). Numerical experiments on effect of river mouth morphology on tsunami behavior in rivers. Coastal Engineering Journal 60 (4): 516–31. https://doi.org/10.1080/21664250.2018.1531815.

Ovakoglou, G., I. Cherif, T.K. Alexandridis, X. Pantazi, A.A. Tamouridou, D. Moshou, X. Tseni, I. Raptis, S. Kalaitzopoulou, & S. Mourelatos. (2021). Automatic detection of surface-water bodies from Sentinel-1 images for effective mosquito larvae control. Journal of Applied Remote Sensing 15 (1): 14507.

Sihombing, Y.I., M.B. Adityawan, A. Chrysanti, Widyaningtias, M. Farid, J.Nugroho, A.A. Kuntoro, & M.A. Kusuma. (2019). Tsunami Overland Flow Characteristic and Its Effect on Palu Bay Due to the Palu Tsunami 2018. Journal of Earthquake and Tsunami 14 (02): 2050009. https://doi.org/10.1142/S1793431120500098.

Siregar, P.N., B.Sudarsono, & L.M. Sabri. (2020). Analisis Hubungan Batas Pengelolaan Wilayah Laut Provinsi Kepulauan Riau dengan Batas Maritim Negara Indonesia Menggunakan Citra Sentinel-1A. Jurnal Geodesi Undip 10 (1): 95–104.

Tanaka, H., M.B. Adityawan, & A. Mano. (2014). Morphological changes at the Nanakita River mouth after the Great East Japan Tsunami of 2011. Coastal Engineering 86: 14–26. https://doi.org/10.1016/j.coastaleng.2014.01.002.

Tanaka, H., K. Kayane, M.B. Adityawan, M. Roh, & M. Farid. (2014). Study on the relation of river morphology and tsunami propagation in rivers. Ocean Dynamics 64 (9): 1319–32. https://doi.org/10.1007/s10236-014-0749-y.

Thieler, E.R., E.A. Himmelstoss, J.L. Zichichi, & A. Ergul. (2009). The Digital Shoreline Analysis System (DSAS) version 4.0-an ArcGIS extension for calculating shoreline change. US Geological Survey.

Tran T.V., A.T.T. Xuan, H.P. Nguyen, F. Dahdouh-Guebas, & N. Koedam. (2014). Application of remote sensing and GIS for detection of long-term mangrove shoreline changes in Mui Ca Mau, Vietnam. Biogeosciences 11 (14): 3781–95. https://doi.org/10.5194/bg-11-3781-2014.

Yang, W., J.Sha, Z. Bao, J. Dong, X. Li, E. Shifaw, J. Tan, & T.H. Sodango. (2021). Monitoring tidal flats boundaries through combining Sentinel-1 and Sentinel-2 imagery. Environmental Technology and Innovation 22 (Mei): 101401. https://doi.org/10.1016/j.eti.2021.101401.

Zhu, Q., P.Li, Z. Li, S. Pu, X. Wu, N. Bi, & H. Wang. (2021). Spatiotemporal Changes of Coastline over the Yellow River Delta in the Previous 40 Years with Optical and SAR Remote Sensing. Remote Sensing 13 (10): 1940.


Article Metrics

Abstract view : 161 times
PDF - 268 times

DOI: http://dx.doi.org/10.31258/jpk.27.3.304-312

Copyright (c) 2022 Mochamad Arif Zainul Fuad, Fikri Hardiansyah, Bambang Semedi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Gedung Marine Center Lt 2. Fakultas Perikanan dan Kelautan Universitas Riau

 Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.